Статті

  • Felix Klein, Gesammelte mathematische Abhandlungen, 3 Bde.
  • Felix Klein, Vergleichende Betrachtungen über geometrische Forschungen, Erlanger Programm 1872

Лекції з загальних питань

  • Ф. Кляйн. Лекції про розвиток математики в XIX сторіччі. (Нім.: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert)
  • Том первый. М.-Л., ГОНТИ, 1937, 432 с.
  • Том второй. М.-Ижевск, 2003, 239 с.
  • Ф. Кляйн., Елементарна математика з точки зору вищої. (Нім.: Elementarmathematik vom höheren Standpunkt, 3 Bde.
  • Том первый. Арифметика. Алгебра. Анализ. М., Наука, 1987, 432 с.
  • Том второй. Геометрия., М., Наука, 1987, 416 с.
  • Том третий. Графики функций. Плоские кривые. 

Лекції з геометрії

  • Ф. Кляйн. Высшая геометрия. М.-Л., ГОНТИ, 1939, 400 с (нем.: Vorlesungen über höhere Geometrie, mit Wolfgang Blaschke)
  • Ф. Кляйн. Неевклидова геометрия [Архівовано 4 березня 2016 у Wayback Machine.]. М.-Л., ОНТИ, 1936, 356 с (нем.: Vorlesungen über Nichteuklidische Geometrie, mit Walther Rosemann)
  • Felix Klein, Anwendung der Differential- und Integralrechnung auf Geometrie: eine Revision der Principien. Vorlesung, gehalten waehrend des Sommersemesters 1901

Лекції з алгебри і теорії чисел

  • Ф. Кляйн. Лекции об икосаэдре и решении уравнений пятой степени. М., 1989, 336 с (Нім.: Vorlesungen über das Ikosaeder)
  • Felix Klein, Ausgewaehlte Kapitel der Zahlentheorie

Лекції з теорії функцій

  • Felix Klein, Лекції з геометричної теорії функцій. Геттинген, зимовий семестр 1880/81
  • Конспект: Einleitung in die geometrische Funktionentheorie.
  • Видання: Felix Klein, Funktionentheorie in geometrischer Behandlungsweise. Leipzig: Teubner, 1987
  • Felix Klein, Über Riemanns Theorie der algebraischen Funktionen
  • Felix Klein, Theorie der elliptischen Modulfunktionen, mit Robert Fricke.
  • Felix Klein, Ausgewaehlte Kapitel aus der Theorie der linearen Differentialgleichungen zweiter Ordnung. Bd. 1, Bd. 2
  • Felix Klein, Ueber lineare differentialgleichungen der zweiten ordnung.
  • Felix Klein Vorlesungen über die hypergeometrische Funktion

Лекції з механіки

  • Ф. Кляйн. Математическая теория волчка. М.-Ижевск, 2003, 69 с.
  • Felix Klein, Arnold Sommerfeld. Ueber die Theorie des Kreisels. 1897—1910. Heft 1-2, Heft 3-4.

Кляйн Ф

Фелікс Християн Кляйн (нім. Felix Christian Klein; 25 квітня 1849 — 22 червня 1925) — німецький математик, відомий своїми роботами з теорії груп, теорії функцій, неевклідової геометрії, а також про зв'язки між геометрією і теорією груп. Його «Ерлангенська програма» 1872 року, що класифікувала різні геометрії на основі їхніх груп симетрії, справила значний вплив на більшу частину тодішніх математиків.

Кляйну належить ідея алгебраїчної класифікації різних галузей геометрії згідно з тими класами перетворень, які для цієї геометрії дають «рівні» фігури. Точніше кажучи, один розділ геометрії відрізняється від іншого тим, що їм відповідають різні групи перетворень простору, а об'єктами вивчення виступають інваріанти таких перетворень.

Наприклад, класична евклідового геометрія вивчає властивості фігур і тіл, що зберігаються при рухах без деформації; їй відповідає група, що містить обертання, перенесення і їхні поєднання. Проективна геометрія може вивчати конічні перетини, але не має справи з колами або кутами, тому що кола і кути не зберігаються за проективних перетвореннь. Топологія досліджує інваріанти довільних неперервних перетворень (до речі, Кляйн відзначив це ще до того, як народилася топологія). Вивчаючи алгебраїчні властивості груп перетворень, ми можемо відкрити нові глибокі властивості відповідної геометрії, а також простіше довести старі. Приклад: медіана є афінний інваріант; якщо в рівносторонньому трикутнику медіани перетинаються в одній точці, то і в будь-якому іншому це буде вірно, тому що будь-який трикутник можна афінним перетворенням перевести в рівносторонній і назад.

Кляйн висловив всі ці ідеї у виступі 1872 «Vergleichende Betrachtungen tiber neuere geometrische Forschungen» («Порівняльний розгляд нових геометричних досліджень»)[20], що отримав назву «Ерлангенської програми». Вона привернула увагу математиків всієї Європи тим, що не тільки давала нове подання і предмет геометрії, але і окреслила ясну перспективу подальших досліджень. На новому рівні повторилося відкриття Декарта: алгебризація геометрії дозволила отримати результати, для старих інструментів вкрай важкі або зовсім недосяжні. Вплив «Ерлангенської програми» на подальший розвиток геометрії був надзвичайно великий.

У наступні 3 роки Кляйн опублікував понад 20 робіт з неевклідової геометрії, теорії груп Лі, теорії багатогранників і еліптичних функцій. Одним з найважливіших його досягнень стало перше доведення несуперечності геометрії Лобачевського; для цього він збудував її інтерпретацію в евклідовому просторі (дивись модель Кляйна). Він побудував приклад односторонньої поверхні — «пляшку Кляйна».

Кляйн надрукував низку робіт про рішення рівнянь 5-го, 6-го і 7-го ступенів, про інтегрування диференціальних рівнянь, про абелеві функції, про неевклідові геометрії. Його праці друкувалися головним чином у «Mathematische Annalen», редактором яких він з 1875 був разом з Адольфом Маєром. Пізніше він досліджував автоморфні функції, теорію дзиґи.

Лекції Кляйна користувалися великою популярністю, багато з них були неодноразово перевидані і перекладені багатьма мовами. Він також опублікував кілька монографій з аналізу, які зводять воєдино досягнуті на той момент результати.

Ще за життя Кляйна вийшов тритомник його Зібрання творів.

Книги, лекції та підручники математика Фелікса Кляйна